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We deduce the symplectic form for the Hamiltonian structure of a new class of 
nonlinear equations with the help of square eigenfunctions associated with the 
corresponding linear problem. The method actually yields two pieces of informa- 
tion simultaneously. One is the structure of the square eigenfunctions, which is 
of prime importance in the study of the inverse problem. The other is the form 
of the symplectic structure fixing up the canonical Poisson bracket relation. 
Finally we discuss some reductions of the initial system and the corresponding 
change of the Hamiltonian structure and the form of the square eigenfunction. 

1. INTRODUCTION 

After the pioneering paper of Ablowitz et  al. (1974) (AKNS), it was 
felt that one of  the most important objects associated with any inverse 
problem is the square eigenfunction constructed out of the solutions of the 
Lax equations and the eigenvalue problem satisfied by these eigenfunctions 
themselves. Incidentally, the construction of square eigenfunctions (SG) is 
not at all a trivial problem. Except in the simplest AKNS problem, it usually 
requires much tricky manipulation to obtain the eigenvalue equation of SG. 
Even in some cases some dependence on the nonlinear field variables or 
eigenvalue A are to be assumed. It may be recalled that there exist at present 
two distinct procedures for arriving at the Hamiltonian structure. One is 
the method of recurrence relations advocated by the Italian school (Boiti 
et  al., 1982, 1984; Tu, 1982) and the other is that of square eigenfunctions 
(Newell, 1979). While the former method can lead to a :final result with less 
labor, the latter, though a bit elaborate, gives crucial information about the 
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form and equation of  square eigenfunctions, which is really a basic 
ingredient in the process of  inverse scattering transform. In this paper we 
consider a singular (in the h plane) Lax equation, 

i~x = _iAo.3~ + (~  2 ~ )  i q4 q6)  
and the hierarchy of equations associated with it. We then deduce the form 
of  square eigenfunction and the equation satisfied by such SGs. If we now 
couple a suitable time evolution of 0, then the linear evolution of the 
scattering data is seen to be mapped on the required Hamiltonian flows. 
In the course of our derivation we digress to show how one can deduce the 
form of the square eigenfunctions for the Kaup-Newell  problem and derive 
the corresponding Hamiltonian form, as this problem has not been discussed 
in this methodology in the literature. 

2. FORMULATION 

Though our main aim is to study the spectral problem noted above, 
we first consider the Kaup-Newell  (1978) problem, whose Hamiltonian 
structure was discussed long before by Sasaki (1980) in the recurrence 
formalism. Here we show first how to obtain the form of the square 
eigenfunction and deduce the same result. The nontriviality of  these results 
becomes quite evident when one looks into the derivation of Kaup (1984) 
for the square eigenfunctions in the case of the sine-Gordon equation in 
laboratory coordinates. 

The Kaup-Newell  spectral problem is written as 

fbx = ia 2Ach + aNd) (2) 

where 

a=(; 0 
It is now customary to define the Jost functions with the help of  the 
asymptotic conditions 

( f l)eiX2x=(lo) (g l )  e-ia2x (~)  lim f2 ; lim ; = (3) 
x~-oo x ~ + o o  \ g 2 /  

With r = + q* and a suitable time evolution of  ~b we can arrive at the 
derivative nonlinear Schr6dinger equation. Let us now start from ( 2 ) a n d  
write it in component form, 

vlx = -iA2vl + Aqv2 
(4) 

v2,, -= Arv~ + iA 2/)2 
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From equations (4) we deduce 

A~=-2 (~)~+ I ~+ 
(4a) 

h2v~=~(v~)x-ih2(q f rv~+q f qv~) 

under the asymptotically vanishing condition for the potentials. Finally, we 
get (with D = O/ax) 

[ - D +  iq J rD -iq J rD l [ v ~  = 2iA2(v!) (s) 
L -irjrD O+ir~qOJ\v~] \v2/ 

which is the spectral problem satisfied by the square eigenfunction (v~, v~) r. 
Since the space part of the Lax pair alone cannot specify the equation under 
consideration, let us consider the time variation of the scattering data. We 
follow the usual nomenclature in writing the S-matrix as 

S=\ b(h ) -~t(h )] 
It is then easy to observe that 

6a=hf+~(aq ch2q'2-ar4~,~O~)dx_ 

3b = h f +~ (-6q q~2~b2 + 6r (ba~bl) 
(6) 

8b=A (~q~2~'2-&~4q) dx 
o o  

tSa =3. (-6q gb2~2 + 6r ~b~t~) dx 

Let us assume that the time evolution of ~b is written as 

th, = Q~b (7) 

with 

(A3A(Aq) B(Aq) '~ 

Q =  \ C(Aq) .-A3A(Aq)] 
Following Ablowitz, we can now write the compatibility condition between 
(7) and (2) as 

g~ =.~r (8) 
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where Q = qbSqb -1. Integration of (8) leads to 

(9) 

Now, from the definition of S we get, for all (x, t), 

"-A 3Ar - Bq~:&, -A3Ad92r ] 

A3Ar162 + Br A3Ar + Br [ (10) 

-C~)2-I-A3A~p1r - C~bl~l q- A3A~bl~2 J 

On the other hand, if, for x-->-co, B, C->0 and Z(A, q)--> A(A), then 

S(--~ = A3A(A) (10 _01) 

(11) 
( a~ - bb 2ab 

S(+~ = A3A \ 2ab -(aa-bG)] 

So if we now write out equation (8) in full, we get 

X3A(,~)(aa+bS-1)=X 2 (-q,r162 r,r162 dx (12a) 

 3A( )Za6= (12b) 

A3A(A )2ab = A2 I+~176 ( q,qb22- r,r (12C) 

We now consider (12c) and observe from equations (4) and (4a) that 

dx (13) 

So we immediately arrive at 

I ~ {  (r162162 \-rx/)qx)ldx=O 

or 

(14) 
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which at once implies [under the assumption of  analytic character of A(A)] 
that 

with 

(15) 

( - D +  iq S rD -iq ~ rD 
~ = ,  - i r~rD D+irJqD] 

It is interesting to note that if we take A(A)= A, (15) reduces to 

iq, - qxx + i(q*q2)x = 0 (16) 

so that (15) yields the symplectic form, if we express A(~) ( -q)  as the 
variational derivatives of  some conserved polynomials Hi(q, r), which can 
be considered to be Hamiltonians. In fact, this point has been deduced in 
Sasaki (1980) and we do not reproduce it here; our main goal was to obtain 
the symplectic operator 

 (10 
Ox 

from the considerations of square eigenfunctions. 

3. A SPECTRAL PROBLEM WITH A SINGULARITY AT 
A = 0 ;  A NEW HIERARCHY OF EQUATIONS 

In this section we consider a new class of  nonlinear equations that can 
be obtained from the spectral problem noted in equation" (1). Written in 
component form, equation (1) reads 

i i 
vlx = -iAvl + - A  q3Vl +"~ q4v2+ qlv2 

(17) 
i i 

V2x = iAV2-A- q3v2+ - A -  qsvl + q2vl 

It is not difficult to see that the following two equations hold due to (17): 

~(Vl)x-iql  q2v~-iql qlv~ 

i f /  2 2 i . i . \  
+--q4h J ~q'v2+q2v'+A qsv~+A q4v2) 

i , i ;  i I +-s qsv~+~ql q4v~=Aval (18) 
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i 2 
-~(V2)~+iq2yqlv~+iqzf  q2v~ 

-Aqsf(q2v~+qlv~+Aqsv~+~q4v~)+Aq3v~ 

iI - ~  q2 q5 v2 --~ q2 q4 v2, = AI)2 

from which one can immediaately infer 

[ ~ e - h ] O = 0  
\, 

where O is the square eigenfunction vector defined as 

10) = [4,~, 4,~, 2i;t-' I (q,~b2+q2qb~+iA-'q4~b 2 

+ ih-lq5621), iA-~6~, iA-162 ] '  

and 5f is a 5 x 5 matrix written as 

(19) 

(20) 

(21) 

Zf= 

"-�89 iq2jq2 �89 iq2Iqa-iq3 
1 1 .  iql S ql - ~.Ox - iql ~ q2 -~tq4 -iql I q4 

2iSql 2i~q2 0 2i~q4 
i 0 0 0 
0 i 0 0 

iq2 j q5 ] 
--iql ~ q5 -- iq3] 

2i!q5 ](22) 

From equation (22) it can be noted that the square eigenfunctions defined 
depend on the nonlinear field variables and also the spectral parameter, as 
in Boiti et al (1982, 1984) and Tu (1982). 

Now, to reproduce a class of nonlinear equations we must specify a 
time evolution along with (20). Let us put, as in (11), 

(AA(A) B(A) ) 
O,=Q~b with Q =  \ C(A) -hA(A) 

If we write equation (1) as 

t~x = - -  i h o r 3 t ~  + N t p  + ih- lM 0 

with 

N(o ql) M=(q  q4)  23, 
q2 q5 -q3 
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then proceeding as usual, we deduce 

S,: = ~ - l (  Nt + ih -I Mt)dP 

where Q = ~ S ~  -1. So, integrating (24), we get 

S = S(-oo)+ f ~ -~(N,+ iA-'M,)dP dx 

Now, if the fields tend to zero asymptotically, then 

[ a a  - bb 2a/:7 ] 
S(+~176 = AA L 2ab - ( a t / -  bb)J  / 

On the other hand, we have 

ff~-l(1~t+i}t-lMt)f~dx=ff[ 0~11 ~ d x 
La2~ 0/223 

where 

a,,  = - i a - '  q3,q~26,- (q,, + /A- 'q4 , )  g2&, 

+(q2, + /A- 'qs , )  6=6, - iA-'q3,~,62 

c~,2 = -iA -1 q3,62r - (q,, +/A -1 q4t) (~2 

+(q2, + ia-'qs,)~b~ - ia-'q3,O~, ~2 

a2~ = ia-~q3,626~ + (ql, + ia -~q4,) r 

--(q2, q- iX- 'qs , ) r  + ia-lq3tq~lqb2 

a22 = iX - '  q3,62~, q- (q,t + /A  - 'q4/)62~2 

-(q2, + iA -lqst)~b, q~ , + iA-'q3,~b,~ 2 

which, when used in (25), leads to 

AA(A )(aa - b b -  1) 

= I (q,,q~2r q 2 , ~ , 6 , -  ia-'q3, 

X (~2q~,-4- ~162)  "4-/}t -1 q4,q~2~b2 q- i - 'qs ,~,6,)  dx 
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(24) 

(25) 

(26) 

(27) 

(28) 
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f 
AA(A)2M~= J ( -q , , q~+  q2,4S~ -2iA-'q3,q~zq~, 

-- i~--l q4,~2 § i~--l q5t~ 2) dx 

AA(A )2ab = f (q , ,4]-  q2,ch2 + 2iA-~q3,r 
d 

+ a  ~' q , , , ~ -  ix-'  qs,6~) ax 

Now, from the x part of the Lax pair, we can prove 

Aab f[,q,~+i 2+ i 2 §  2 i  q,qs)] = " " q4~b2 ~q2(t~l)x A qEq3~b~+-~(q2qg- 

X 2+ 2 h q s t ~ l + A  - 

i 2 i 
- ~  q~(~)2x + ~- q~q3r 

= iq4+~ q~x, iq5-~ q2x, - ~  (q2q4- qlq,), -iqlq3, -iq2q3 I0) 

(29) 

=<n[o> 
Furthermore, we have 

�89 0 
0 -�89 

In>= o o 
0 0 

0 0 

(30) 

0 0 i q2 

0 -�89 �89 I q3 
- i q l  0 q4 
- iq2 0 q5 

=Jlq) (say) (31) 

So, combining equations (30), (31), and the last equation of (29), we get 

Iq)t + 2Jl)(~?n)[q) = 0 (32) 

where I)(A) is any analytic function of the spectral parameter A. Equation 
(32) actually represents the hierarchy of nonlinear equations generated by 
our spectral problem. 

4. VARIATIONAL EQUATIONS AND 
HAMILTONIAN STRUCTURE 

In this section we want to prove that the quantities ~"[q)  are nothing 
but variational derivatives of some conserved quantities. From the basic 
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def in i t ion  o f  the  sca t ter ing  mat r ix  and  the fo rmulas  for the  var ia t ion  o f  the 
pa rame te r ,  we deduce  

6a(A)  
log a - 

a 

L \ a a 1 

I f  we use 

then  we get  

Set 

4~lq'2=fdx(qz~b~qq+q14~2q'2+A qSchlqq+ih q4t~2~2) 

6a_a h 2ih-lt~q3 q2--A-a-a tql ha 

i ~1 I~11 .+iq4 ~ba~P2) + --- q5 h ha h 

q-( Sq, + iA-l ~q2) ( ~ )  

-(~q2+ iA-~Sqs)(~-~) ] 

[K) = [ r ' r 

i ~bl~b ~ 
+ - -  q5 

A ha  

i :] "q-; q4 iA_ l ~b2~b 2 iA-- i c~ 1 
' A a  ' 

so that  f rom (35) we can infer  

where  

g rad  q , ( ln  a )  = AIK) 

g r a d q i - -  , , , - ,  - 
6q2 3q3 6q4 tSqsJ 

(33) 

(34) 

(35) 

(36) 

(37) 
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Now, proceeding as in the case of  square eigenfunctions, we have 

LIK ) = A [K)+ yF(q)+  y ' (A)F(q)  

F (q )  = (q, q, 0, 0, 0, 0) T (38) 

F(q)  = (0, O, O, q4, q5) T 

i), (i -o-,) 0 i 0 0 0 0 0 0 0 

i 0 0 0 0 0 A -1 
3 '= 0 0 0 " 3"A= 0 ih -1 0 (39) 

0 0 0 0 0 0 

NOW under  the assumption of analyticity we set 

K = ~ A-"K.  
n = l  

which, when plugged into (38), yields 

K. = L"- '  K1 - L"-2F'( q) (40) 

Now we define the Hamil tonian as 

H = -iA + iA-lq3 + (q~ + iA-lq4)t)2/t)l (41) 

But from the Lax equation we know that y = VE/V~ satisfies the Riccati 
equation 

2i i " 
= 2iAy - -~  + q2 - -~ qgY 2 -- q~ yZ (42) Yx qaY +A q5 

Expanding 

y = Y . A - n y . ;  H =  ~ A-"H~; a = A-"I~ (43) 
0 n = l  0 

we get from (37), (41), and (42) 

grad q,. I .  = LnK1 - L"-XF'(q) (44) 

Finally we arrive at 

=j__8 q, H (45) 
6u 

giving the Hamil tonian structure of  the said hierarchy of equations with J 
as the simplectic structure and IO) as the basic square eigenfunction. 

0125 
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5. R E D U C T I O N  OF T H E  S Y S T E M  

In many physical situations it often occurs that the dependent set of 
variables are not all independent, but are constrained by some algebraic 
relations and so the actual number of nonlinear variables is reduced. It also 
happens that the nonlinearity increases due to such reductions. Here we 
show how such a constraint affects the structure of the square eigenfunction, 
their operator, and hence the Hamiltonian structure. 

Let us again consider the spectral problem (1) and introduce the 
condition 

q~ + q4q5 = y: (46) 

where y is constant both in space and time. The constraint equation (46) 
leads to 

q5 q4 
q3, = -- 2q----~ q4 , -  2q----~ qs, 

Substituting in the last equation of (29), we get 

AA(A)2ab=I [ - 2  -2+2iA - ' /  q' - ~ q s t ) ~ b , c b 2  q , , r  q2t01 ~-~q3 q4t 

+iA-' q4t6~- iA-l qs,62 ] dx 

which can be written as 

= f (o'[q,)R dx 

where (cr] is the square eigenfunction of  the reduced set defined by 

(~1 = (6~,  6, 2, x,, x2) 

iA_,6~_ia_,q~ f (q,6~+ _2+i _2+i --2~ X, = q2tPl ~- q s cP l ' ~ q4022) 
q3 

�9 , 

2 l 2 , l 2 x2=iA-IoZ-FiA-I~3f (qlq~22-Fq2~l"F~qsc~f--~q4(b2) 

with 

(47) 

(48) 

(49) 

r q l ,  ] 
Iq>. /q"' /  

L-qs ,J  
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Using this condition in equations (18) and (19), we obtain 

" i 

- -~ D + iq2 Iql 

--iqllql 
~ =  

i - i q_55 lq 1 
q3 

i q4 Iql 
q3 

along with 

iq21q2 -iq3+iq2lq4 iq21q5 

i 
- D - iqllql -iqllq4 -iq3 - iqllqt 
2 

�9 q5 . q5 _iq5 
- ~ - -  l q 2  - t - -  lq4 lq~ 

q3 q3 q3 

i + i q4 lq2 i q4 Iq4 i q4 lq5 
q3 q3 q3 

(50) 

with 

i 2 i i 
+ ~  q 2 q 3 q b l - ~  q l (  q~2)x +-~ q2q3cb~ 

q i ( q 2 q 4 _ _ q l q s )  f ( q l ~ b 2  9 ;t + q 2 ~ 1 +  A 2 i q 3 ~ b l + _ _ ~ q 4 ~ 2 ) ]  2 t 2 

= [ dx 
J 

( 71 1 = ( iq4 + �89 iq5 - �89 , - iq2 q3 , - iq2q3) 

and since we can write 

where 

-�89 0 i , q2 
N = [q)n = 

/-~q3 0 0 q4 

-- iq3 0 q5 

the hierarchy of equations is given by 

IT) = N I q ) R  

IqR) t + 2 N I-I(~LP~)lqR) = 0 

(50) 

To obtain the time evolution, we can again evaluate ; tab from the asymptotic 
values of q~, 4~-, 0, 0, which yields 

; tab = f (t~lt~2)x 
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Proceeding as before, one can again prove that ,~nlq)R a r e  variational 
derivatives of  some Hamil tonian and so the reduced hierarchy is a set of  
nonlinear equations that is Hamiltonian with the symplectic structure deter- 
mined by N. At this point it will be interesting to note that the whole set 
of  equations is changed if the time evolution is prescribed in a different 
manner.  I f  the time part  is governed by the i / A  term, then the new set of  
equations is given by 

IqR), + 2 J " ~ ( ~ ) l q ) R  = 0 

with (i ~ 
j , , =  0 0 i 3 

i 0 - � 8 9  

0 0 � 8 9  

so that in each case one can generate the symplectic form J", N, etc., very 
easily from the construction of the square eigenfunction,; and also it is not 
difficult to connect it to the variational derivatives of  some conserved 
quantities with respect to the fields. As an example of  equations generated, 
we observe that for n = 1 in equation (32) we get 

iql t = qlx + 2q4 

iq2t = q2x - 2q5 

iq3t = q l q 5 -  q2q4 

iq4t = --2qlq3 

iqst = 2q2q3 

which is the same set of  equations as obtained by Boiti et al. (1982, 1984). 

6. C O N C L U S I O N  

We have shown how to construct the square eigenfunctions in the case 
of  a Lax operator  other than that of the simplest AKNS form. These 
eigenfunctions play a pivotal role in the main theme of the inverse scattering 
transform. Our approach also serves to obtain the symplectic structure in 
relation to the Hamil tonian form. We have also deduced the symplectic 
form in the case of  the Kaup-Newel l  problem as a prototype example. In 
all other cases these eigenfunctions have a complicated dependence on the 
nonlinear field variables and the spectral parameter.  We have reproduced 
the same set of  equations as in Boiti et al. (1982, 1984) and Tu (1982), but 
our approach has extra information regarding the structure of  the square 
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e igenfunct ions .  A few years  back  it was shown by Fokes  et al. (1982) tha t  
this  square  e igenfunc t ion  can even be used  to ob ta in  the  he red i t a ry  o p e r a t o r  
for  the  L B  symmetr ies .  W o r k  in this d i rec t ion  is in progress  and  will  be 
r e p o r t e d  elsewhere.  

A C K N O W L E D G M E N T  

One  o f  the  au thors  (S.R.)  is gra teful  to the  gove rnmen t  o f  I n d i a  (DST)  
for  suppor t .  
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